
LA-UR -?CI-12i~ I

“TITLE: COMMLNTS ON THE CREATIO14 OF SECURE OPERATIflG SY5TEMS

AUTHOR(S): J. C. !kW12] 1

SUBMITTED TO: Association for Computing Machinery 7th

Symposium on Operating Systems Principles

BV captana of th!s ●rhclt, tha oubhth?f magnizw that tfw
U.S. Gowmnunt mtbnm anornmluzws, rovsltv.fmtllmnw
10 pubhsh or mprodum Ww publdma form of this conlribu.
rion, or to ●now othem !O do so, for US. (lovormmt pur.
~M.

Tfu La Almm Scimtiffc Labor#torv mquatt thm t~ pub.
Iislwr l~ntify MS UWclo ● work pwforrmd undw tlw ●m.

Picn of W U.S. 09pwwrmnt of EIwrgv,

L%% ,,
LOS ALAMOS SCIENTIFIC LABORATORY
Post Office Box 1663 Los Alamos, New Mexico 87545
An Afhmatlve Actbn/Ec@ (3PPfXLJnityEmployer

UNITED 8TATR8

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544
Phone: (505)667-4448
E-mail: lwwp@lanl.gov

PerQective—

The intent of multilevel virtual operating systems is to provide each

user with the logical equival~nt of a distinct dedicated processing environ-

ment. Each user is connected to a process executing on a virtual processor

within its own virtual address space.

I have chosen to be rather parochial in this treatment of secure operil-

ting systems with the intention of applying some of the wealth of excellent

previous research to approach the development of a system tailored to the

Department of Energy (DOE) and 3epartment of Defense - type (DOD) large-

scale scientific computing environments with which I am currently involved.

This leads to the following assumptions which shape the underlying philo-

sophy of this paper.

1) The computing envtronmer,t often contains critical National Security
Information (14S1)and thtis,warrants substantial protection measures.

2) It is eccmomically advantage , to share a single computer among
users working at distinct and various levels of security privileges,

3) The necessary security po”;icy is well-defined.

4) Personnel screening measures provide a reliably high level of staff
integrity.

5) Reliable physical and data cormnunication security is always present.

6) These systems must be considered to be constant targets of malicious
penetration efforts.

7) It is desirable to make the cost of a security penetration effort
as expensive as possible in terms of time and money.

8) The computer ha~dware to be employed is error-free with regard to
predictable security-sensitive mechanisms.

This discussion does not attempt to present the technical details l’;this

complex subject, but instead refers the reader to specific references.

The Issue of information security arises when a stngle computer system

provides computation and information storage to a cormnunity of users. As

the cost and functional advantages of such virtual systems have been ex-

ploited, the need to protect the contained Information has become extremely

Important. “Protection” is a general term aescriblng all mechanisms which

control access of a program to other objects Internal to the system. There

-2-

exists an enormous variety of such mechanisms. However, the computing

corrrnunityis well experienced with “secure operating systems” that have

failed to measure up to their claims. “Security”, in the context of

operating systems, describes a set of negative attributes, e.g. making it

impossible for a system user of a given security level to interfere with,

cr access the processes or information belonging to a user of greater

security privilege. It is my contention that sufficient theory, knowledge

and technology exist to produce an operating system that enforces the

security policy required for the environment to which I have just alluded.

I believe that the crux of this matter is the ability to verify the finished

product and to prove the correctness of the security policy implementatiori.

Internal Protection Mechanisms-.—.—---- - -—------.—--—-.—

Security policy can be realized as a grouping of secured objects to

which a given use- should and should not be granted access under the distinct

security levels. Secured objects are lcgical and physical elements of the

computer system which are to be protected, e.g. files, processes, etc. Thus,

in a rudimentary sense, a system can be declared secure if the required secur-

ity policy can be described as sets of access relationships between device-

type objects, data objects, and their users or as protected setsl and if the

access protection is enforced. Internal protection controls are necessary

to limit the object accessing capability of each virtual machine according

to the individual users’ authorization under the security policy.

Obviously, the internal protection mechanisms directly affect the security

of the system. A multitude of such mechanisms havt been devised, but histor-

ically their implementations have been within existing systems which were

not designed with security in mind and the protection controls have been

undermined by intrinsic logical flaws and design oversights inherent in the

host system.2 It is worthwhile to review some of the most thoroughly in-

vestigated mechanisms: controlled sharing and isolation, mutually suspicious

subsystems, and access controllers and capability systems.

Perhaps the two most studied and implemented types of protection controls

are isolation and controlled sharing. Generally, these controls attempt to

rigorously define a physica13 or spatia14 domain in which a particular process

executes at any given instant. This donrain is most often achieved through

-3-

sets of access capabilities coupled with hardware mechanisms, e.g. Multics-

like descriptor registers. 5
Isolation restricts a process to access only

the objects within its assigned domain. Virtual machine techniques are

well suited to supporting isolation mechanisms and are well understood.

Whereas isolation attempts to maintain a logical “fire wall” between co-

existing virtual machines, controlled sharing implies permitting a process

executing in one domain to have restricted access capability to objects in

another domain. Control’

problem than does isolat”

costs in terms of design

performance will likely

ed sharing constitutes a more complex implementation

on. Careful consideration of the benefits and

complexity, protection reliability, and system

ndicate that controlled sharing is not an abso”lute

necessity in the specific environment that I am addressing.

Mutually suspicious subsystems (cr “protected subsystems”) are charac-

terized by a requirement for a process to be allowed to switch from one

execution doma+n to another while retaining only a subset of access capa-

bilities from its prior dorllain. The objective in this situation is to pro-

vide mutual protection for multiple subprocesses (i.e. multiple domains) that

must cooperate within the context of a single virtual machine. This attribute

facilitates the secure use of borrowed programs among users and foreign pro-

grams (i.e. products of external organizations not under the control of the

host system’s security staff) by supporting encapsulation and confinement

constraints on the subject processes. The work of Jonez,7 Lampson,8 and

Schroederg lends credence to the viability of implementing ti:ultiple

synchronous cooperating subprocess domains within a single virtual machine.

Access controllers
10 11,9

and capability-based addressing schemes,

either individually or in combination, have been explored in many different

applications and implementations. Access controller systems are list-oriented

and typically containe , at the least, an address descriptor for the stcrage

segment containing the list and the list itself. When a segment of storage

is to be accessed by a user, a separate “shadow” structure can be established

simultaneously to contain the access controller mechanism. The controller’s

address descriptor is assigned a unique designator or identifier that is

inserted into the memory mapping system that directs the locatlon of secured

objects. Then in order for the processor to accomplish a users’ request to

-4-

access a secured object, the unique designator of the appropriate access

controller must be passed from the processor to the memory system and indi-

vidual accesses checked for consistency with the access control list.

Capability systems also have numerous permutations, but all are basically

ticket-oriented mechanisms. A useful implementation would load a protection

descriptor register for a given virtual process w~th the unique capability,

i.e. a “ticket” that creates a secure path to the catalog of capabilities which

controls the specific segments that the process is entitled to access. Lacb

capability in ~ catalog should include designators for the specific access

privileges granted to the user for each segment. The research of 5alt~er12

and Fabryllshows that the most effective implementations of capability systems

is through speci~l hardware, such as a tagged storage architect’’~e, that can

prevent forging or illicit mariipulation of capability valu~s. Access controller

and capability systems have many design and implementation subtitles arising

from hardware architecture and attempts to provide authorization to share

segments which implies changing of lists or capabilities. Capability controls

in particular show significant promise and methods to cope with these subtle

difficulties have b-”n devised.
13

A carefully formulated straightforward

security policy doe ‘uch to ensure that these protection mechanisms can be

implemented efficiently and with reliable integrity.

Major Threats to a Milit~ Security System— ------—. ——

Historically, and in the context of an adversary philosophy, the two most

insidious subversion techniques probably have been so-called “Trojan horses”

and “trapdoors”. TF,aterm Trojan horse refers to a covert software feature

which is designed to allow a penetrator to circumvent the internal protec-

tion mechanisms of the system without actually needing access to the system’s

internals. An example of a simple Trojan horse is a program khich emulates

the interactive user sign-on and authentication procedure of a time-sharing

systern. If the emulator is left in control of a terminal which will be used

by a person with specially classified passwords or identifiers, then those

classified items may be captured by the emulator which in turn exits and

gives the user a realistic error message so that he is unaware of the sub-

version. This case is relatively straightforward and can De protected against.

However, Trojan horses can be added after a system implementation is com-

plete and installed. Gne possibility is the camouflaging of the covert featL1re

-5-

within a mathematical library ~ubroutine such that when invoked, it may

access privileged information or data. A Trojan horse may also be used to

implant a trapdoor in an operating system long after the syst~m has been

installed and wh?n it is less likely to be discovered.

“T,-apdoor” describes covert code, which is embedded into an operating

system, usually requiring high level access to operating system design de-

tails, that facilitat~s bypassing the protection mechanisms from a far re-

moved level, e.g. unclassified user level. Trapdoors may be inserted during

design or indirectly after implementation and testing by modifying the

system source code so that the code is automatically included during a sutJ-

sequent recompilation of the suurce. Guarding against trapdoors is a complex

and costly undertaking.

It appears that the range of deliberate system attack scenarios that can

be instigated by adversaries are considerably fewer than the range of possi-

bilities for unintentional flaws that may occur while designing or implementing

a system as complex as a large scale multilevel multiprogramming operating

system. The operational behavior of the integrated hardware subsystems may

also manifest idiosyncrasies that can be exploited by adversaries. A prime

source of unintentional logical flaws within complex software systems are

dependency structures. Shroeder, Clark, and Saltzer
14

classify dependencies

as explicit (i.e. caused by procedure calls or interprocess cormnunications)

and implicit (i.e. caused by Lirect physical sharing of writeable data among

managers of secured objects). If the correct functio)~ing of a code module

which manages secured objects depends upon the prior correct functioning of

another module, then a dependency exists. Schroeder, et. al. have delineated

five categories of dependencies that should be considered when quantifying

the total dependency structure of a set of integrated “object manager”

modules.

1)

2)

3)

Thc:e categories are:

Component Dependencies: A module X depends upon other modules that
control secured objects that are components of the objects defined
by X.

Map Dependencies: A module X depends upon other modules that provide
the map of correlations between the names of the objects X controls “
and the names of the components of each object.

Program Storage Dependencies: A module X contains algorithms which
use information stored as secured objects that are controlled by
other modules.

-6-

4) Address Space Dependencies: A module depends upcm other modules
which control the address space (i.e. object) in which the module
executes.

5) Interpreter Dependencies: A module depends upon another module that
implements the interpreter or virtual processor required for the
module to execute.

The majority of protection mechanism flaws which have been encountered

during attempts to penetrate existing conventional operating systems with

security controls that were added after design and implementation of the

general purpose system was completed can be attributed to these general classes
15of dependencies. The experiences of Attanasio, et al, Popek and Farber,l

14
and Shroeder, et al are relevant to the development of a secure system.

McPhee16 suggests some solutions to dependencies found in the first release

of OS/VS2 by IBM and in particular the Time-of-Check-to-Time-of-Use (TOCTTOU)

problem. The TOCTTOU problem arises in multiprogramming systems in which a

time interval exists between a validity check of specific secured objects and

the completion of the ~peration to be performed with those objects. An example

might involve timing idiosyncrasies of an input/output (1/0) system segment

and its associated I/CI channel protocol or conwnand list processing that might

allow validity-checked objects to be altered before the 1/0 operation process

was completed. Virtual memory paging mechanisms can also introduce flaws if

not properly understood and controlled.

Traditional Appro_iachesto Achievinq Computer System Security—. —.

The realization that existing multiprogramming time-shared systems in

the late 1960’s afforded little in terms of system security and were riddled

with protection flaws and weaknesses spurred substantial research effo)’ts

into physical and logical (i.e. internal) computer operating system

security that continue to the present. Unfortunately, in those early years

the science of designing and implementing large scale complex software syszems

was not in the state of sophistication, advancement, and acceptance thdt it

is today. This fact coupled with an early emphasis on physical protection

rather than the emerging security kernel concepts, modular design, virtual

machine theory, verifiability, etc. no doubt contributed to a number of disa-

ppointing experiences (as perceived by users, e.g. the Military) with com-

puter security rese~rch. A good deal of skepticism still persists in security-

conscious organizations such as the Government ~nd Military and not enough

-7-

support has been given to applying recent developments in theory, technology,

and softwre engineering in a coherent manner to create inod%-mlsolutions that

can enforce security policies. Physical protection methods are very well de-

veloped and are exemplified by communications cryptographic technology and

computer facility operation procedures for secure environments. ,41though ex-

ternal protection techniques are known, it is not clear they are employed widely

or uniformly so as to be thoroughly effective.

In order”to deal exp~diently with obvious security and integrity short-

comings in operating systems used in the NS1 community, three popular solu-

tions were proposed in the forms of restricted operating procedures, audit

and surveillance subsystems, and tiger teams. These approaches, however,

do not produce secure operating systems with high degrees of integrity. Re-

striction of operating procedures is typified by the operation of military

multiuser systems at one exclusive information security level. Before th~

system can be used for processing at a different level it must be purged of

all information not authorized for the new security level. This procedure

is time consuming and typically involves a great deal of manual intervention

to exchanae removable storage media, etc. In many cases this single-level

operation coupled with the purging of tasks leads to inefficient and extremely

costly computer operations.

sting procedures within the

per year.2

Audit and surveillance

system to detect and report

Earld ;tempts to implement

In 1973 the expense caused by restricted oper-

Air Force alone was estimated to be SIG0,000,OOO

subsystems are to be included in an operating

breaches in security policy within the system.

such subsystems were ineffective duc co the inability

to precisely formulate and model system security policy so that the surveillance

subsystem could be programmed to recognize illicit actions when they occurred.

This severely limited the scope of surveillance possible. Further, the abserice

of fully developed security specification techniques and logic verification

methods meant that the subs.yst.emitself could not be relied upon to resist

subversion completely. More recent work by Jones and Llpton17 describes

audit/surveillance subsystems in the proper perspective and indicates mechan-

isms that may make these subsystems effective and desirable. One serious

-a-

consideration of these subsystems

and validity checking overhead.

Tiger teams are groups of ski”

attempt to penetrate a functioning

is their effect on system performance

led systems archtects and progranners who

operating system in order to discover flaws

in the intern~l pi-otection mechanisms. Tiger teams do have a viable mission,

but it must be recognized that they can only prove the presence of flaws and

not their absence. When flaws are discovered they are to be alleviated, but

the act of correcting one flaw may simultaneously introduce undesirable

unknown side effects. This means that tiger team assaults must be an ex-

haustive iterative process that is not generally a cost effective or pro-

ductive method of creating a secure system.

An Approach to the Overall Problem of Creating Secure Operating Systems—— —.

It can be argued that the rapid advances in computer hardware technology

and steady decline in price/performance ratios reduce the need for sec~re

multilevel multiuser systems since each level of usage can be given substantial

computationtil resources at relatively low cost with individual isolated

systems and restricted operating procedures. I will assume that the large-

scale scientific computing environment that is concerned with NSI will not

significantly benefit from this economic trend for several years to come

and that the development of secure multilevel virtual systems will produce

results that can also be applied to further reducing the cost and manage-

ment burden of Federal and commercial systems in the future.

Due to the marked advances in recent years in the fields of data pro-

cessing system protection and security, system structure and cor~ectness,

software engineering and management, and software reliability and correctness;

I submit that secure operating systems with high degrees of integrity for

the NSI environment are now within our grasp. By “serurity: I refer to the

ability of an operating system to embody a specific information protection

policy and control the system resou).as to prevent the accessing or modifying

of protected information by adversary (i.e. malicious) users. “Integrity”

is the quality of soundness or correct implemeritation of a specific security

policy. Designing and implementing such a system should not be construed as

a trivial or inexpensive process, but it is feasible. The following discussion

-9-

takes a broad overview of a NSI computing environment (see opening remarks)

starting at the physical perimeter and working inward toward the central col~-

puter operating system while enumerating the principal design areas where

existing theory can be directly applied.

The hypothetical environment will include a central facility under strict

physical security measures, i.e. guards, fences, etc. All personnel at this

facility will also have been carefully screened and cleared by a stringent

program, e.g. DOE Q-clearance. Assume that all of these personnel are

authorized to the highest security level, but that need-to-know rules and

special subclassifications control disseminatiorl of classified i~formation.

In this facility it is reasonable to assume that an adversary able to gain

clearance would have other means to access sensitive information other than

through a romputer system, e.g. reports, waste containers, desks, etc. ~Jever-

theless, in this environment the terminal access c~n be reliably limited to

persons already screened by the clearance process and admitted through

physical security. Ttiemost crucial requirement here is to enforce the need-

to-know and subclassification criteria of the installation security policy

to prevent, for example, users authorized for Unclassified (U) or Secret (S)

access from accessing or modifying Top Secret (TS) informaticm. A second

facility adjunct to the central facility which must be operated as an open

(i.e. tot.allyunclassified) environment, e.g. an interns-.ional research labor-

atory. The presence of cleared as well as uncleared >ersonnel, all of whom

are to be restricted to U information and computinq resources, can Present

a convenient path for access by an adversary. One solution might be to

provide this facility with a distinct isolated computer system physically

separated from the central facility. It will be presumed that this is not

desirable for economic, space, and very large-scale computational Capability

requirements so that the vast resources of the central facility are necessary.

The principal objective of this overall system is the implementation of

the total security policy within the physical constraints of single computer

system housed within the central facility and used to process TS, S, and U

information. Computer system access is to be through data terminals as in

a conventional interactive time-shared system. Beginning with the outermost

perimeter of the system, we first encounter the terminal subsystem. In many

-111-

ways this is the best understood and most straightforward svstem to Orotect.

Data communication lines can be physically shielded and protected and tne

channel information should be el;rrypted. At this level conventional en-
~~

cryption techniques are pro~ablJ’more than adequate. The lines should alsc

be attached to specific fixed locations, e.g. offices and other designated

areas to aid in authenticating the ~ser’s environment and privil~ges. Sig-

nature verification based upon the unique unforgeable acceleration and rhythr

cuds of the user’s handwriting holds future promise for authenticating the

identit~ and pt-iviieges of each user when he pr~sents his assigned unique

identifiers to the Syste!c. The focal point of the terminal subsyste[~ should

be ~ dedi:ated device which implement; the user location/identifier/access

34:?;’”:-Taticn authentication portion of the security policy. All cormnunication
7.
I Ins: er:~ring tilesyster~must pass through this filter first. At this point

a::5s5 :: the operating sy!tem can be denied and data terminal surveill~nca

‘~ecnar.is~sare ii~plemented. If the filter system is designed and implemented

for certification in the manner to be proposed later for the central opera-

tin~ system itself, according to a precisely defined and modeled security

policy, then it can be made secure. The results can be predicted to a cer-

tain extent, by examining the success of the Network Security Controller

developed by the Los Alamos Scientific Laboratory and the MITRE Secure

Conmwnications Processor project. 13,19 The controlled terminal interface

subsystem routes specific authenticated user corrununicationsto separdte

distinct line interface hardware and software associated wiih each classifi-

cation environment within the central computing system.

With the transmit and receive data communication paths established,

attention can be focused on the crucial isstiasconcerning the central com-

puting operating system and its machine environment. It is imperative

that before t4e system specification and design is begun the security pclicy

must be precisely definud and translated into a fGrm which facilitates veri-

fication and implementation. The classic models of Bell and l?Padula
21,22

are not complete for the typical NSI computing environment, are unnecessarily

complex, and do not lend themselves easily to automated manipulation and

verification. Gne of the more viable and easily managed modeling methodologies

-11-

that is also suited to automated manipulation and proof is that proposed

by Feirtag, et al23 and expressed in the language SFEC!AL.24 Other rec~nt

azio. ?tic approaches such as the simple and flexible technique suggested

by Jcmes and Lipton
17

are also candidates. The important issue in this pre-

liminary phase of system development is that the security policy must be

defined and described clearly, precisely, and concisely sc that it is veri-

fiable and intellectually manageable. If these qualities are not achieved

there is little hope for imple~enting a “sec~re” 0peratiR3 SySter:.

The development gr~iP itself should be structured in a manner that can

protect the evolving system from potential threats such as trapdoor implace-

men~. The project staff should be cleared tG the highest level at wnich the

final system may be used. The two-man rule (or “buddy syste~”) should be

employed thro~ghout develcprlent and use. This approacn requires the cooperation

of two persons to access or modify an object. Double-encryption is one method

of implementing the two-man rule. Public-key cryptosystems based upon the

difficulty of factoring large numbers as advocated by Rivest, et al
25 may

also be applied depending upon the development organization and enviroflment.

All design and development work should be performed on a computer system

under restricted crperatinq procedures, dedicated to the project and cwtrolled

sclely by the project administration. The s~st.ensoftware staff should be

hept as small as possible and organized as teams with specific module respon-

sibility and accountability. One “security team” of pe-+aps four senior

systems staff (including the chief system ,rogrammer) should be dedicated

to verification of all modules and enforcement of the security policy within

the operating system. This team functions as two closely interacting groups

to implement a “check and balance” arrangement during individual module de-

velopment. When a module is tested and declared to be croperly functioning

by its implementer, it is turned over to the secut”ity team. Each two-person

subgroup of this team possesses a different classified conventional encryp-

tion key. After verifying the module aminst the security model, the two

subgroups doubly-encrypt the module along with its associated verification

arlalysisand checksum and place it in restricted storage. Any further man-

ipulationOF that module requires the mutual cooperation of both subgroups or

undermining of both cryptographic keys. This process is repeated during

-12-

system testing until final system integration and installation is appropriate.

At this tim the security team functions as a unit in final verification and

certification of the system and then the chief staff member encrypts it with

a single key after which the chief security officer for the target sjst~m also

encrypts the system with a different key. Loading and initial+zatio:, of the

system then requires twc-man cooperation. At this point the system can be

placed into operation and subjected to tiger teams and surveillarlce.

Certain important design characteristics uf the operating system are

expressed in the following general design philosophy:

a)

b)

c)

d)

The system must be logica’ly verifiable with auton’atic or semi-.
automatic tools’ to demonstrate

implemented and enforced. Such

compatible with a lattice nmdel

Denning.
27

The system should be structured

the security policy IS correctly

a certification should be

as suggested by Denning
26

and

hierarchically to segregate

user applications, user systems~ the s~st~incontrol program,

and the -ecurity mechanism. Davies’ concept of “spheres of

control’”
28

i.e. the logical boundaries and properties associ-

ated with each active system element, can be applied to

defining and ”formalizing the hierarchy.

The security policy should be implemented exclusively as a

protected nucleus, compact ar verifiable, whose integrity

guarantees the enforcement of the policy and which acts as

the hub of the systems structural organization. This kernel

concept has been substantiated by many Including Schroeder, 29

Popek and Farber,l Popek and Kline,30
and Ames31 and permits

development of the upper levels of the hierarchy without

having to reevaluate the security of the entire system.

The operating system and especially its security kernel must

be intellectually manageable, as with any sophisticated

system. Tools and languages that facilitate this discipline

are the subject of intense study and experimentation and

should be applied to secure systems whenever appropriate.

Guttag, et a132 have developed dn algebraic axiomatic structure

-13-

that serves to reduce the amount of ccnnplexity that must

be comprehended for any process in a given context. Such

abstraction reinforces the security kernel verification

process and improves the f~asibility of the task.

e) The inherent clarity, implicity, and maintainability of

the virtual machine co~cept for a multiuser monoprocessor

system
30

makes it the :ogical basis for this system. In

the event that a multiprocessor system becomes necessary

to replace individual virtual processors, FaI)ry’s research

suggests some techniques which mig!]t aid the transformation

without degradiilg reliability or integrity.

The detailed design phase of a secure operating system must consider

the many known difficulties and attempt to develop solutions in light of

past research and experience. These technical considerations are too

numerous to detail irlthis discussion, but for the hypothetical system

being described some particularly challenging areas can be identified.

a) The functional Interrelationships between the security

kernel and its upper hierarchical layers [e.g. the virtual

machine monitor (VMM)] must be carefully studied. Wlf, et a133
points out the subtle difference between system policies and the

mechanisms used to realize them. An important example of such

a subtlety involves the handling of user 1/0. Although the security

kernel must be directly involved with 1/0 transfers as they affect

security, the 1/0 processes and cWics handlers need not be

integrated into ths kernel .34 Such processes as 1/0, scheduling,

allocation, etc. are best implemented in the WM. The VMI can

be h~’ptmodular and manageable without l~ssening security kernel

integrity.

b) 1/0 subsystem integrity can be enhanced by segregating 1/0

devices such as disc and tape systems into separate TS, S, and U

compartments. Run-time validlty checking can also be performed

within the 1/0 process at the cost of additional complexity to

ensure tre security of individual virtual user processes that are

.

-14-

executing in the same virtual processcr.

c) Close attention must be given to eliminating loops in dependency

structures, i.e. the structure of the dependent relationship
14

should be a partially ordered set.

d) Capability-based addressing
11

has the potential of offering a“

highly efficient form of absolute address for virtual secured

objects and simplified programing conventions. The implementation

should be considered in the light of the dynamic capability-list

management problems encountered by Lampson and Sturgis in the Cal

system.
35

e) All operating system structuring, including the security kernel,

must be viewed from the standpoint of yielding high operating

efficiency end correct use of the hardware features.

It is most probable that little or no freedom exists in procuring a new

computer hardware system or designing a totally new system specifically to

implement the hypothetical secure operating system, but rather it will have

to be implemented with an existing system. However, one can identify

desirable hardware features that can be useful in implementing a virtual

secure system. No single system currently has all the desirable features,

but some are much better suited to security objectives, e.g. the IBM

Systcm/370, Honeywell Level 69, and DEC KL-10. A few desirable archi-

tectural

a)
b)
c)
d)
e
f1
9
h1
1)

The

hardware features are listed below.

Virtual memory, either page or segment oriented
High-speed dynamic address translation
Hardware-enforced processor states
Tagged-memory architecture
Mulitple register sets
High-speed CPU control registers
Nonrepetitive time-of-day clock
Error-trapping and reporting
Progransnable 1/0 channel control

Virtual Control Storage (VCS) feature is an experimental extension

to the IBM VM/370 operating systein implemented in software. Attanasio’s

discussion of VCS36 includes hardware analogies to prograninable control

storage concepts. A VCS-type facilit”, implemented in hardware control

memory could utilized to provide a special protected high-speed context

-15-

or domain switch~ng capability and to implement various virtual processor

functions as execute-only synchronous hardware instructions. The VCS

concept has many novel implications.

Conclusion

I have reviewed the predominant general classes of problems that

impact secure operating systems for NS1 or Military-type environments :’.nd

cited research results that can be directed toward solving those problems

in a multiuser multilevel-security virtual system. Although many technical

issues remain to be resolved and the production of a secure operating system

is still expensive, the state of the art of s:tstemdesign makes such a

project feasible and puts a class of verifieb”ly secure virtual systems

within our grasp. My intention for these conunents is to renew awareness

and interest in secure systems within agencies and organizations which

may have given up hope for secure systems or have not considered the po-

tential and to generate discussion of a general systematic approach to

creating an NSI-level secure system.

-16-

Bibliography—.

[1] Gerald J. Popek and David A. Farber, “A Model for Verification of Data
Security in Operating Systems,” Conunun.ACM, Vol. 21, no.9, pp. 737-749,
September 1973.

[2j ~~l;. qnderson, “Computer Security Technology Planning Study,” ESD-TR-73-51,
. and II, October 1973.

[3] R. Fabry, “Dynamic Verification of Operating System Decisions,” Commun.
ACM, Vol. 16, no.11, pp. 659-668, November 1973.

[4] P. J. Denning, “Third Generation Computer Systems,” Computing Surveys,
Vol. 3, no.4, pp. 175-216, 1971.

L51 Elliot Organick, “The Multics System: An Examination of its Structure,”
M.I.T. Press, 1971.

[6] J. J. Donovan and S. E. 14adnick, “Hierarchical Approach to Computer System
Integrity,” IBM Systems Journal, Vol. 14, no.2, pp. 188-202, 1975.

[7] A. Jones, “Protection in Programed Systems,” Fh
Mellon Univ., 1973.

[8j Il.!4.Lampson, “Dynamic Protection Structures,” ‘
Vol. 35, pp. 27-3tI

[9] M. D. Schroeder, “Cooperation of r4utually Suspic
puter Utility,” Project MAC TR-104, M.I.T.,1972.

D. dissertation, Carnegie-

969 FJCC AFIPS Conf. Proc.,

ous Subsystems in a Com-

110] A. Bensoussan, C. Clingen, and R. Jaley, “The Multics Virtual Memory:
Concepts (IndDesign,” Conmmn. ofACM, VO1.15, no.5, pp.308-318, May 1972.

[11] R. S. Fabry, “Capability-based Addressing,” Conmun. of ACM, VO1.17, no.7,
PP. 403-412, July 1974.

[12] J. H. Saltzer, “Traffic Control in a Multiplexed Computer System,” Project
MAC TR-30, M.I.T., 1966.

[13] J. H. Saltzerand M. D. Schroeder, “The Protection of Information in Com-
puter Systems,” Proc. of the IEEE, VO1.63, no.9, pp. 1278-1308, September
1975.

[14] M. D. Schroeder, J. D. Clark, J. H. Saltzer, “TheMultics Kernel Design
Project,” Proc. of the 6th ACM Symposium on Operating Systems Principles,
Vol.11, no.5, PP.43-56, November 1977.

[15] C. R. Attanasio, P. W. Markstein, and R. J. Phillips, “penetrating an
Operating System: A Study of VM/370 Integrity,” IBM Systems Journal,
no.1, pp. 102-116, 1976.

-17-

Continuation of Bibliography

[161

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

W. S. McPhee, “Oper~ting System Integrity in OS/VS2,” IBM Systems
Journal, no.3, pp. ?30-252, 1974.

A. K. Jones and R. J. Lipton, “The Enforcement of Security Policies
for Computation,” Proc. of ACM 5th Symposium on Operating Systems
Principles, VO1.9, no.5, pp.197-206.

P. S. Tasker, “Design of a Secure Conrnunications Processor:
Overall Environment and Concept,” Air Force Systems Command
Electronic Systems Division, ESD-TR-73-135, Vol. 1, May 19?3.

P. S. Tasker, “Design fifa Secure Conununications Processor:
Central Processor,” Air Force Systems Connand Electronic
Systems Division, ESD-TR-74-181, Vol. 3, June 1974.

R. M. Needham and M. D. Schroeder, “Using Encryption for Auth-
entication in Large Networks of Computers,” Commun. of ACM,
VO1. 21, no. 12, pp. 993-999, December 1978.

D. E, Bell and L. J. La Padula, “Secure Operating Systems:
Mathematical Foundations,” Air Force Systems Conmand Electronics
S@ems Division, ESD-TR-73-278, Vols. I and II, November 1973.

D. E. Bell, “Secure Computer Systems: A Refinement of the Mathe-
matical Model,” Air Force Systems Comnand Electronic Systems
Connand, ESD-TR-73-278, Vol. III, April 1974.

R. J. Feirtag, K. N. Levitt, and L. Robinson, “Proving Multilevel
Security of a System Design,” Proc. of the Sixth ACM Symposium
on Operating Systems Principles, Vol. 11, no. 5, pp. 57-65,
November 1S75.

O. Roubine and L. Robinson, “SPECIAL Reference Manual,” Stanford
Research Institute, 1977.

R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining
Digital Signatures and Public-key Cryptosystems,” Conrnun. of ACM,
Vol. ‘.2,no. 2, pp. 120-126, February 1978.

D. E. Denning, “A Lattice Model of Secure Information Flow,”
Connun. of ACM, Vol. 19, no. 5, PP. 236-242, May 1976.

D. E. Denning and P. J. Denning, “Certification of Programs for
Secure Information Flow,” Comnun. of ACM, Vol. 20, no. 7,
PP. 504-513, July 1977.

C. T. Davies, “Data Processing Spheres of Control,” IBM Systems
Journal, Vol. 17, no. 2, pp. 179-198, 1978.

M. D. Schroeder, “Engineering a Security Kernel for Multics,”
Proc. of the Fifth ACM Symposium on Operating Systems Principles,
\’ol.9, no. 5, PP. 25-32, November 1975.

-18-

Continuation of Bibliography

[30] G. J. PopQk and C. S. Kline, “Verifiable Secure Operating System
Software,” AFIPS, Pro:. of the 19/4 hational Computer Conference,
pp. 145-151, 1974.

[31] S. R. Ames, “The Design of a Security Kernel,” The MITRE Corp.,
M75-212, April 1975.

[32] J. V. Guttag, E. Horowitz, and D. R. Musser, “Abstract Data Types
and Software Validation,” Conrnun.ofACM, Vol. 21, no. 12,
pp. 1048-1064, December 1973.

[33] W, Wulf, E. Cohen, !4.Corwin, A. Jones, R. Levin, C. Pierson, and
F. Pollack, “HYDRA: The Kernel of a Multiprocessor Operating
System,” Comnun. ofACM, VO1.17, no. 6, pp. 337-345, June 1974.

[34] E. L. Burke, “Concept of Operation for Handling 1/0 in a Secure
Computer at the Air Force Data Services Center,” Air Force Systems
Comnand Electronic Systems Division, ESD-TR-74-113, April 1974.

[35] B. W. Lampson and H. E. Sturgis, “Reflections on Operating System
Design,” Cormnun. ofACM, Vol. 19, no. 5, pp. 251-265, May 1976.

[36] C. R. Attanasio, “Virtual Control Storage - Security Measures
in VM/370,” IBM Systems Journal, Vol. 18, no. 1, pp. 93-110,
Jnauary 1979.

